Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Heliyon ; 10(6): e27764, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38510052

RESUMEN

Background: Urinary incontinence (UI) is a common health problem that affects the quality of life and health of millions of people in the United States (US). We aimed to investigate the association between sitting time and UI symptoms in the US population. Methods: A cross-sectional survey of participants aged 20 and above from the National Health and Nutrition Examination Survey 2007-2018 was performed. A self-report questionnaire that reported complete data on UI, sitting time and covariates was included. Weighted multivariable logistic and regression models were used to assess the association between sitting time and UI symptoms. Results: A total of 22,916 participants were enrolled. Prolonged sitting time was associated with urgency UI (UUI, odds ratio [OR] = 1.2, 95% confidence interval [CI] = 1.1 to 1.3, p = 0.001). Compared with patients with sitting a time shorter than 7 hours (h), moderate recreational activity modified the association between sitting time and mixed UI in males in the fully adjusted model (OR = 2.5, 95% CI = 1.4 to 4.5, p = 0.002). A sitting time over 7 h was related to mixed UI (MUI, OR = 1.6, 95% CI = 1.1 to 2.2, p = 0.01) in males, and stress UI (SUI, OR = 0.9, 95% CI = 0.8 to 0.98, p = 0.03) in females. However, no significant difference was found among the UI, SUI, and MUI groups in fully adjusted model. Conclusions: A prolonged sitting time (≥7 h) was associated with UUI symptoms in all populations, SUI symptoms in females and MUI symptoms in males compared with sitting time lower than 7 h. Compared with those sit shorter than 7 h, moderate recreational activity may be a modifier between prolonged sitting and MUI symptoms in male participants, which warrants further studies for confirmation.

2.
JAMA ; 331(14): 1225-1226, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38501213

RESUMEN

This JAMA Guide to Statistics and Methods article explains effect score analyses, an approach for evaluating the heterogeneity of treatment effects, and examines its use in a study of oxygen-saturation targets in critically ill patients.


Asunto(s)
Enfermedad Crítica , Modelos Estadísticos , Gravedad del Paciente , Heterogeneidad del Efecto del Tratamiento , Humanos , Enfermedad Crítica/terapia , Oximetría , Oxígeno/análisis , Ensayos Clínicos Controlados Aleatorios como Asunto
3.
Int J Biol Macromol ; 263(Pt 2): 130379, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38403214

RESUMEN

Cytoplasmic coat protein complex II (COPII) plays a multifunctional role in the transport of newly synthesized proteins, autophagosome formation, and endoplasmic reticulum (ER)-ER-phagy. However, the molecular mechanisms of the COPII subunit in ER-phagy in plant pathogens remain unknown. Here, we identified the subunit of COPII vesicles (BcSfb3) and explored the importance of BcSfb3 in Botrytis cinerea. BcSfb3 deletion affected vegetative growth, conidiation, conidial morphology, and plasma membrane integrity. We confirmed that the increase in infectious hyphal growth was delayed in the ΔBcSfb3 mutant, reducing its pathogenicity in the host plant. Furthermore, the ΔBcSfb3 mutant was sensitive to ER stress, which caused massive ER expansion and induced the formation of ER whorls that were taken up into the vacuole. Further examination demonstrated that BcSfb3 deletion caused ER stress initiated by unfolded protein response, and which led to the promotion of ER-phagy and autophagy that participate in sclerotia formation. In conclusion, these results demonstrate that BcSfb3 plays an important role in fungal development, pathogenesis, ER-phagy and autophagy in B. cinerea.


Asunto(s)
Autofagia , Retículo Endoplásmico , Virulencia , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Botrytis
4.
Cell Death Discov ; 10(1): 92, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378809

RESUMEN

Galectin-3 (Gal-3) is a multifunctional protein that has been linked to fibrosis and inflammation in the cardiovascular system. In this study, we examined the impact of Gal-3 on inflammation and fibrosis in patients with arteriogenic erectile dysfunction (A-ED) and the underlying mechanisms involved. To induce arterial injury, we utilized cuffs on the periaqueductal common iliac arteries of Sprague‒Dawley (SD) rats and administered a high-fat diet to co-induce local atherosclerosis. Our results showed that we successfully developed a novel A-ED model that was validated based on histological evidence. In vivo, the vascular lumen of rats subjected to a high-fat diet and cuff placement exhibited significant narrowing, accompanied by the upregulation of Gal-3, Toll-like receptor 4 (TLR4), and myeloid differentiation primary response protein 88 (MyD88) expression in the penile cavernosa. This led to the activation of nuclear factor kappa B 65 (NF-κB-p65), resulting in reduced intracavernosal pressure, endothelial nitric oxide synthase expression, and smooth muscle content, promoting inflammation and fibrosis. However, treatment with Gal-3 inhibitor-modified citrus pectin (MCP) significantly normalized those effects. In vitro, knocking down Gal-3 led to a significant reduction in TLR4, MyD88, and NF-κB-p65 expression in corpus cavernosum smooth muscle cells (CCSMCs), decreasing inflammation levels. In conclusion, inhibiting Gal-3 may improve A-ED by reducing inflammation, endothelial injury, and fibrosis in the penile corpus cavernosum through the TLR4/MyD88/NF-κB pathway. These findings highlight the potential therapeutic target of Gal-3 in A-ED.

5.
Lab Chip ; 24(4): 642-657, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38165771

RESUMEN

As a class of antibodies that specifically bind to a virus and block its entry, neutralizing monoclonal antibodies (neutralizing mAbs) have been recognized as a top choice for combating COVID-19 due to their high specificity and efficacy in treating serious infections. Although conventional approaches for neutralizing mAb development have been optimized for decades, there is an urgent need for workflows with higher efficiency due to time-sensitive concerns, including the high mutation rate of SARS-CoV-2. One promising approach is the identification of neutralizing mAb candidates via single-cell RNA sequencing (RNA-seq), as each B cell has a unique transcript sequence corresponding to its secreted antibody. The state-of-the-art high-throughput single-cell sequencing technologies, which have been greatly facilitated by advances in microfluidics, have greatly accelerated the process of neutralizing mAb development. Here, we provide an overview of the general procedures for high-throughput single-cell RNA-seq enabled by breakthroughs in droplet microfluidics, introduce revolutionary approaches that combine single-cell RNA-seq to facilitate the development of neutralizing mAbs against SARS-CoV-2, and outline future steps that need to be taken to further improve development strategies for effective treatments against infectious diseases.


Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , Humanos , SARS-CoV-2/genética , Pruebas de Neutralización , Anticuerpos Monoclonales/metabolismo , Microfluídica , Análisis de Secuencia de ARN , Anticuerpos Antivirales
6.
Pharm Stat ; 23(1): 31-45, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37743566

RESUMEN

Phase Ib/II oncology trials, despite their small sample sizes, aim to provide information for optimal internal company decision-making concerning novel drug development. Hybrid controls (a combination of the current control arm and controls from one or more sources of historical trial data [HTD]) can be used to increase statistical precision. Here we assess combining two sources of Roche HTD to construct a hybrid control in targeted therapy for decision-making via an extensive simulation study. Our simulations are based on the real data of one of the experimental arms and the control arm of the MORPHEUS-UC Phase Ib/II study and two Roche HTD for atezolizumab monotherapy. We consider potential complications such as model misspecification, unmeasured confounding, different sample sizes of current treatment groups, and heterogeneity among the three trials. We evaluate two frequentist methods (with both Cox and Weibull accelerated failure time [AFT] models) and three different commensurate priors in Bayesian dynamic borrowing (with a Weibull AFT model), and modifications within each of those, when estimating the effect of treatment on survival outcomes and measures of effect such as marginal hazard ratios. We assess the performance of these methods in different settings and the potential of generalizations to supplement decisions in early-phase oncology trials. The results show that the proposed joint frequentist methods and noninformative priors within Bayesian dynamic borrowing with no adjustment on covariates are preferred, especially when treatment effects across the three trials are heterogeneous. For generalization of hybrid control methods in such settings, we recommend more simulation studies.


Asunto(s)
Neoplasias , Proyectos de Investigación , Humanos , Teorema de Bayes , Simulación por Computador , Neoplasias/tratamiento farmacológico , Tamaño de la Muestra , Ensayos Clínicos como Asunto
7.
Proc Natl Acad Sci U S A ; 120(47): e2309227120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37963245

RESUMEN

Spatial transcriptomics technology has revolutionized our understanding of cell types and tissue organization, opening possibilities for researchers to explore transcript distributions at subcellular levels. However, existing methods have limitations in resolution, sensitivity, or speed. To overcome these challenges, we introduce SPRINTseq (Spatially Resolved and signal-diluted Next-generation Targeted sequencing), an innovative in situ sequencing strategy that combines hybrid block coding and molecular dilution strategies. Our method enables fast and sensitive high-resolution data acquisition, as demonstrated by recovering over 142 million transcripts using a 108-gene panel from 453,843 cells from four mouse brain coronal slices in less than 2 d. Using this advanced technology, we uncover the cellular and subcellular molecular architecture of Alzheimer's disease, providing additional information into abnormal cellular behaviors and their subcellular mRNA distribution. This improved spatial transcriptomics technology holds great promise for exploring complex biological processes and disease mechanisms.


Asunto(s)
Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Animales , Ratones , ARN Mensajero/genética , Transcriptoma
8.
Natl Sci Rev ; 10(9): nwad161, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37936830

RESUMEN

The ongoing COVID-19 pandemic caused by SARS-CoV-2 has raised global concern for public health and economy. The development of therapeutics and vaccines to combat this virus is continuously progressing. Multi-omics approaches, including genomics, transcriptomics, proteomics, metabolomics, epigenomics and metallomics, have helped understand the structural and molecular features of the virus, thereby assisting in the design of potential therapeutics and accelerating vaccine development for COVID-19. Here, we provide an up-to-date overview of the latest applications of multi-omics technologies in strategies addressing COVID-19, in order to provide suggestions towards the development of highly effective knowledge-based therapeutics and vaccines.

9.
J Am Chem Soc ; 145(32): 17892-17901, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37482661

RESUMEN

Exploring an efficient and robust electrocatalyst for hydrogen evolution reaction (HER) at high pH and temperature holds the key to the industrial application of alkaline water electrolysis (AWE). Herein, we design an open tunnel structure by dealloying a series of Laves phase intermetallics, i.e., MCo2 and MRu0.25Co1.75 (M = Sc and Zr). The dealloying process can induce a zeolite-like metal framework for ScCo2 and ScRu0.25Co1.75 by stripping Sc metal from the center of a tunnel structure. This structural engineering significantly lowers their overpotentials at a current density of 500 mA/cm2 (η500) ca. 80 mV in 1.0 M KOH. Through a simple process, ScRu0.25Co1.75 can be easily decorated on a carbon cloth substrate and only requires 132 mV to reach 500 mA/cm2. More importantly it can maintain activity over 1000 h in industrial conditions (6.0 M KOH at 333 K), showing its potential for practical industrial applications.

10.
Microbiol Spectr ; 11(3): e0052623, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37191530

RESUMEN

Botrytis cinerea, the causal agent of gray mold, is an important plant pathogen causing preharvest and postharvest diseases. Due to the extensive use of commercial fungicides, fungicide-resistant strains have emerged. Natural compounds with antifungal properties are widely present in various kinds of organisms. Perillaldehyde (PA), derived from the plant species Perilla frutescens, is generally recognized as a potent antimicrobial substance and to be safe to humans and the environment. In this study, we demonstrated that PA could significantly inhibit the mycelial growth of B. cinerea and reduced its pathogenicity on tomato leaves. We also found that PA had a significant protective effect on tomato, grape, and strawberry. The antifungal mechanism of PA was investigated by measuring the reactive oxygen species (ROS) accumulation, the intracellular Ca2+ level, the mitochondrial membrane potential, DNA fragmentation, and phosphatidylserine exposure. Further analyses revealed that PA promoted protein ubiquitination and induced autophagic activities and then triggered protein degradation. When the two metacaspase genes, BcMca1 and BcMca2, were knocked out from B. cinerea, all mutants did not exhibit reduced sensitivity to PA. These findings demonstrated that PA could induce metacaspase-independent apoptosis in B. cinerea. Based on our results, we proposed that PA could be used as an effective control agent for gray mold management. IMPORTANCE Botrytis cinerea causes gray mold disease, is considered one of the most important dangerous pathogens worldwide, and leads to severe economic losses worldwide. Due to the lack of resistant varieties of B. cinerea, gray mold control has mainly relied on application of synthetic fungicides. However, long-term and extensive use of synthetic fungicides has increased fungicide resistance in B. cinerea and is harmful to humans and the environment. In this study, we found that perillaldehyde has a significant protective effect on tomato, grape, and strawberry. We further characterized the antifungal mechanism of PA on B. cinerea. Our results indicated that PA induced apoptosis that was independent of metacaspase function.


Asunto(s)
Fungicidas Industriales , Solanum lycopersicum , Humanos , Antifúngicos/farmacología , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Apoptosis
11.
Antioxidants (Basel) ; 12(4)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37107171

RESUMEN

Selenium is an essential trace element for health that can only be obtained through food. However, the pathological processes of selenium deficiency in cattle have received little attention. This study investigated the effects of selenium deficiency on oxidative stress, apoptosis, inflammation, and necroptosis in the lungs of weaning calves compared with healthy calves as controls. The lung selenium content and the expression of 11 selenoproteins mRNA in selenium-deficient calves were substantially reduced compared with the controls. Pathological results showed engorged alveolar capillaries, thickened alveolar septa, and diffuse interstitial inflammation throughout the alveolar septa. The levels of GSH and T-AOC, as well as the CAT, SOD, and TrxR activities, were significantly decreased compared with healthy calves. MDA and H2O2 were significantly elevated. Meanwhile, the apoptosis activation in the Se-D group was validated. Next, in the Se-D group, several pro-inflammatory cytokines showed higher expression. Further research revealed that the lungs in the Se-D group experienced inflammation via hyperactive NF-κB and MAPK pathways. The high level of expression of c-FLIP, MLKL, RIPK1, and RIPK3 indicated that necroptosis also causes lung damage during selenium deficiency.

12.
Small ; 19(10): e2206814, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36642794

RESUMEN

Gel polymer electrolyte (GPE) in quasi-solid state Zn-air battery (QSZAB) will release alkali during cycling, resulting in gradual dehydration of GPE, corrosion of Zn electrode, Zn dendrites growth, and therefore inferior performance. Here, hollow Sn microspheres are prepared on Zn substrate by the technique of colloidal self-assembly. The inner surfaces of hollow Sn microspheres are modified by 2-hydroxypropyl-ß-cyclodextrin (hollow Sn-inner HPßCD) to regulate the released alkali at GPE|anode interface. The hollow Sn-inner HPßCD can lessen the leakage of released alkali, make stored alkali diffuse back to GPE during the charging process, and mitigate the loss of soluble Zn(OH)4 2- to suppress Zn dendrites growth. Resultantly, GPE in QSZAB with hollow Sn-inner HPßCD exhibits a high retention capacity for alkaline solution. The cell also exhibits a long cyclic lifespan of 127 h due to the effective regulation of released alkali, which outperforms QSZAB without hollow Sn-inner HPßCD by 7.94 times. This work rivets the regulation of released alkali at GPE|anode interface, providing new insight to improve QSZABs' performance.

13.
Dev Comp Immunol ; 140: 104612, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36473548

RESUMEN

Salmon alphavirus (SAV) infection leads to severe pancreas disease (PD) with typical inflammatory responses in Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Nsp2, an important nonstructural protein of SAV, can activate NF-κB signaling pathway to reduce inflammatory responses. However, the molecular mechanism remains unclear. In this study, the ML (279-421aa) of Nsp2 was revealed to be the key domain for activating NF-κB. We focused on a host protein, DEAD-box RNA helicase 3 (DDX3), that may interact with Nsp2 to regulate NF-κB-induced inflammatory. The interaction between DDX3 and Nsp2 was confirmed in vitro. Overexpression of DDX3 inhibited the activation of NF-κB by Nsp2. SAV Nsp2 relieves the inhibitory effect of DDX3 on NF-κB, thereby initiating the innate immune response. This study revealed the molecular mechanism of Nsp2-induced inflammatory response by targeting DDX3 to activate NF-κB, providing a theoretical basis for revealing the underlying infection mechanism and pathogenesis of SAV.


Asunto(s)
Infecciones por Alphavirus , Alphavirus , Enfermedades de los Peces , Oncorhynchus mykiss , Salmo salar , Animales , FN-kappa B , Alphavirus/fisiología , Transducción de Señal
14.
Front Immunol ; 13: 1008131, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36451816

RESUMEN

Escherichia coli is one of the most common bacterial pathogens in cattle. Prophylactic vaccines are considered promising strategies with the potential to reduce the incidence of colibacillosis. Some studies suggested that bacterial ghosts may serve as a novel approach for preventing bacterial infections. However, the roles of administration route on vaccine immunogenicity and efficacy have not been investigated. In this study, the efficacy of vaccination via different immune routes in generating humoral and cellular immune response was compared through subcutaneous (SC), intramuscular (IM), and oral (O) administration in female BALB/c mice with bacterial ghosts prepared using wild type Escherichia coli isolates CE9, while phosphate buffer saline (PBS) and inactivated vaccines containing aluminum adjuvants (Killed) were used as control. Our results showed that the plasmid pBV220-E-aa-SNA containing E. coli was efficiently cleaved at 42°C with 94.8% positive ratio as assessed by colony counts. Transmission electron microscopy (TEM) confirmed bacteria retained intact surface structure while devoid of cytoplasmic component. We found that total IgG titers in killed, IM and SC groups showed significant increase on 7, 14, 21 and 28 days post-immunization. The IgA level of the IM group was higher than that of all other groups on the 28th day. Meanwhile, four experimental groups showed a significant difference in IgA levels compared with PBS control. In the IM group, an increase in the relative percentages of CD3+CD4+ T cells was accompanied by an increase in the relative percentages of splenic CD3+CD8+ T cells. In comparison with the inactivated vaccine, intramuscular CE9 ghosts immunization elicited higher levels of IL-1ß, IL-2, IL-6 and IL-12. Subcutaneous and intramuscular immunizations were significantly associated with improved survival in comparison with oral route, traditional vaccine and the control. Pathologic assessment revealed that less severe tissue damage and inflammation were found in lung, kidney, and intestine of IM group compared with other groups. The results above demonstrate that immunization of Escherichia coli CE9 ghosts via intramuscular injection elicits a more robust antigen-specific immune response in mice to prevent the Escherichia coli infection.


Asunto(s)
Infecciones por Escherichia coli , Vacunas contra Escherichia coli , Femenino , Bovinos , Ratones , Animales , Escherichia coli , Administración Oral , Bacterias , Infecciones por Escherichia coli/prevención & control , Ratones Endogámicos BALB C , Inmunoglobulina A
15.
Anal Chem ; 94(40): 13869-13878, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36170625

RESUMEN

In mass analysis of proteins, mass spectrometry directly measures the mass to charge ratios of ionized proteins and promises higher accuracy than that of indirect approaches measuring other physicochemical properties, provided that the charge states of detected ions are determined. Accurate mass determination of heterogeneously glycosylated proteins is often hindered by unreliable charge determination due to the insufficient resolution of signals from different charge states and inconsistency among mass profiles of ions in individual charge states. Limited charge reduction of a subpopulation of proteoforms using electron transfer/capture reactions (ETnoD/ETnoD) solves this problem by narrowing the mass distribution of examined proteoforms and preserving the mass profile of the precursor charge state in the reduced charge states. However, the limited availability of ETnoD/ETnoD function in commercial instruments limits the application of this approach. Here, utilizing a range of charge-dependent and accuracy-affecting spectral features revealed by a systematic evaluation at levels of both the ensemble and subpopulation of proteoforms based on theoretical models and experiments, we developed a limited charge reduction workflow that enables using collision-induced dissociation and higher energy collisional dissociation, two widely available reactions, as alternatives to ETnoD/ETnoD while providing adequate accuracy. Alternatively, substituting proton transfer charge reduction for ETnoD/ETnoD provides higher accuracy of mass determination. Performing mass selection in a window-sliding manner improves the accuracy and allows profiling of the whole proteoform distribution. The proposed workflow may facilitate the development of universal characterization strategies for more complex and heterogeneous protein systems.


Asunto(s)
Proteínas , Protones , Electrones , Iones/química , Espectrometría de Masas/métodos , Proteínas/química
16.
Rapid Commun Mass Spectrom ; : e9369, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906701

RESUMEN

RATIONALE: The profiling of natural urinary peptides is a valuable indicator of kidney condition. While front-end separation limits the speed of peptidomic profiling, MS1-based results suffer from limited peptide coverage and specificity. Clinical studies on chronic kidney disease require an effective strategy to balance the trade-off between identification depth and throughput. METHODS: CKD273, a urinary proteome classifier associated with chronic kidney disease, in samples from diabetic nephropathy patients was profiled in parallel using capillary electrophoresis-mass spectrometry (CE-MS), liquid chromatography with mass spectrometry (LC-MS), and matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). Through cross-comparison of results from MS1 of unfractionated peptides and elution-time-resolved MS1 as well as MS/MS in LC- and CE-MS approaches, we evaluated the contribution of false-positive identification to MS1-based identification and quantitation, and analyzed the benefit of front-end separation in terms of accuracy and efficiency. RESULTS: In LC- and CE-MS, although MS1 data resulted in higher number of identifications than MS/MS, elution-time-dependent analysis revealed extensive interference by non-CKD273 peptides, which would contribute up to 50% to quantitation if they are not separated from genuine CKD273 peptides. In the absence of separation, MS1 data resulted in lower numbers of identifications and abundance pattern that significantly deviated from those by liquid chromatography with tandem mass spectrometry (LC-MS/MS) or capillary electrophoresis with tandem mass spectrometry (CE-MS/MS). CE showed higher identification efficiency even when less sample was used or achieved faster separation. CONCLUSIONS: To ensure the reliability of MS1-based urinary peptide profiling, front-end separation should not be omitted, and elution time should be used in addition to intact mass for identification. Including MS/MS in data acquisition does not compromise the speed or identification number, while benefiting data reliability by providing real-time sequence verification.

17.
Nutrients ; 14(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35745243

RESUMEN

Despite the well-known benefits of breastfeeding and the World Health Organization's breastfeeding recommendations for COVID-19 infected mothers, whether these mothers should be encouraged to breastfeed is under debate due to concern about the risk of virus transmission and lack of evidence of breastmilk's protective effects against the virus. Here, we provide a molecular basis for the breastfeeding recommendation through mass spectrometry (MS)-based proteomics and glycosylation analysis of immune-related proteins in both colostrum and mature breastmilk collected from COVID-19 patients and healthy donors. The total protein amounts in the COVID-19 colostrum group were significantly higher than in the control group. While casein proteins in COVID-19 colostrum exhibited significantly lower abundances, immune-related proteins, especially whey proteins with antiviral properties against SARS-CoV-2, were upregulated. These proteins were detected with unique site-specific glycan structures and improved glycosylation diversity that are beneficial for recognizing epitopes and blocking viral entry. Such adaptive differences in milk from COVID-19 mothers tended to fade in mature milk from the same mothers one month postpartum. These results suggest that feeding infants colostrum from COVID-19 mothers confers both nutritional and immune benefits, and provide molecular-level insights that aid breastmilk feeding decisions in cases of active infection.


Asunto(s)
COVID-19 , Leche Humana , Lactancia Materna/métodos , Calostro/química , Femenino , Humanos , Lactante , Leche Humana/metabolismo , Madres , Embarazo , Proteómica , SARS-CoV-2
18.
Anal Chem ; 94(21): 7520-7527, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35584038

RESUMEN

Characterization of protein higher-order structures and dynamics is essential for understanding the biological functions of proteins and revealing the underlying mechanisms. Top-down mass spectrometry (MS) accesses structural information at both the intact protein level and the peptide fragment level. Native top-down MS allows analysis of a protein complex's architecture and subunits' identity and modifications. Top-down hydrogen/deuterium exchange (HDX) MS offers high spatial resolution for conformational or binding interface analysis and enables conformer-specific characterization. A microfluidic chip can provide superior performance for front-end reactions useful for these MS workflows, such as flexibility in manipulating multiple reactant flows, integrating various functional modules, and automation. However, most microchip-MS devices are designed for bottom-up approaches or top-down proteomics. Here, we demonstrate a strategy for designing a microchip for top-down MS analysis of protein higher-order structures and dynamics. It is suitable for time-resolved native MS and HDX MS, with designs aiming for efficient ionization of intact protein complexes, flexible manipulation of multiple reactant flows, and precise control of reaction times over a broad range of flow rates on the submicroliter per minute scale. The performance of the prototype device is demonstrated by measurements of systems including monoclonal antibodies, antibody-antigen complexes, and coexisting protein conformers. This strategy may benefit elaborate structural analysis of biomacromolecules and inspire method development using the microchip-MS approach.


Asunto(s)
Medición de Intercambio de Deuterio , Microfluídica , Medición de Intercambio de Deuterio/métodos , Espectrometría de Masas/métodos , Conformación Proteica , Proteínas/química
19.
J Pharm Sci ; 111(6): 1587-1598, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35235843

RESUMEN

The hexamerization of natural, human IgG antibodies after cell surface antigen binding can induce activation of the classical complement pathway. Mutations stimulating Fc domain-mediated hexamerization can potentiate complement activation and induce the clustering of cell surface receptors, a finding that was applied to different clinically investigated antibody therapeutics. Here, we biophysically characterized how increased self-association of IgG1 antibody variants with different hexamerization propensity may impact their developability, rather than functional properties. Self-Interaction Chromatography, Dynamic Light Scattering and PEG-induced precipitation showed that IgG variant self-association at neutral pH increased in the order wild type (WT) < E430G < E345K < E345R < E430G-E345R-S440Y, consistent with functional activity. Self-association was strongly pH-dependent, and single point mutants were fully monomeric at pH 5. Differential Scanning Calorimetry and Fluorimetry showed that mutation E430G decreased conformational stability. Interestingly, heat-induced unfolding facilitated by mutation E430G was reversible at 60°C, while a solvent-exposed hydrophobic mutation caused irreversible aggregation. Remarkably, neither increased dynamic self-association propensity at neutral pH nor decreased conformational stability substantially affected the stability of concentrated variants E430G or E345K during storage for two years at 2-8°C. We discuss how these findings may inform the design and development of IgG-based therapeutics.


Asunto(s)
Activación de Complemento , Inmunoglobulina G , Humanos , Inmunoglobulina G/metabolismo , Mutación , Estabilidad Proteica
20.
Methods Mol Biol ; 2406: 455-468, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35089574

RESUMEN

Characterization of soluble protein aggregates provides valuable information for revealing mechanisms of protein aggregation process and assessing the activity and safety of protein therapeutics. However, the noncovalent interaction, the transient nature and higher degree of structural heterogeneity of the soluble aggregation system hinders precise characterization at the molecular level. Here, we describe methods using native mass spectrometry coupled with temperature-control electrospray ionization and size-exclusion chromatography to monitor the aggregation process and profile the aggregates in detail.


Asunto(s)
Agregado de Proteínas , Espectrometría de Masa por Ionización de Electrospray , Cromatografía en Gel , Espectrometría de Masa por Ionización de Electrospray/métodos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...